Adversarial Token Attacks on Vision Transformers

Ameya Joshi, Gauri Jagatap, and Chinmay Hegde

New York University

Introduction

TANDON

SCHOOL OF

ENGINEERING

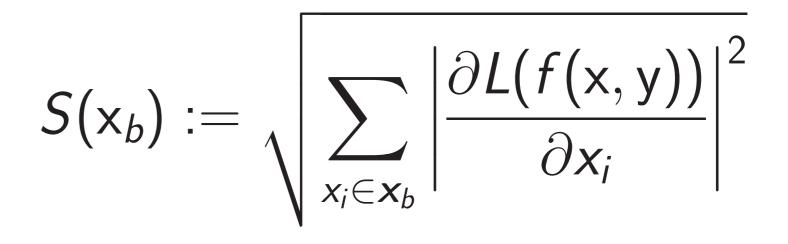
- Vision transformers use a patch token based self-attention mechanism unlike CNNs.
- However, this may lead to specific vulnerabilities to token-level attacks.
- Token level attacks = Block-sparse constraint on attacks.
- We probe and analyze effect of token attacks on Vision transformers and CNNs.

Contributions

New block-sparsity constraint based token attack

Token Attacks

Saliency:



Adversarial Token Attack

Require: x_0 :Input image, f(.): Classifier, y: Original label, K: Number of patches to be perturbed, p: Patch size.

1: $[b_1 \dots b_K]$ = Top-K of $S(\mathbf{x}_b) = \sqrt{\sum_{x_i \in \mathbf{x}_b} \left| \frac{\partial L(f(\mathbf{x}, \mathbf{y}))}{\partial x_i} \right|^2}, \forall b.$

- Token attacks leverage saliency to implement block sparsity
- Effect of token attacks on flavors of ViTs and CNNs
- ► ViTs are less robust than CNNs!

Setup

Dataset: Imagenet **Models:** Pretrained

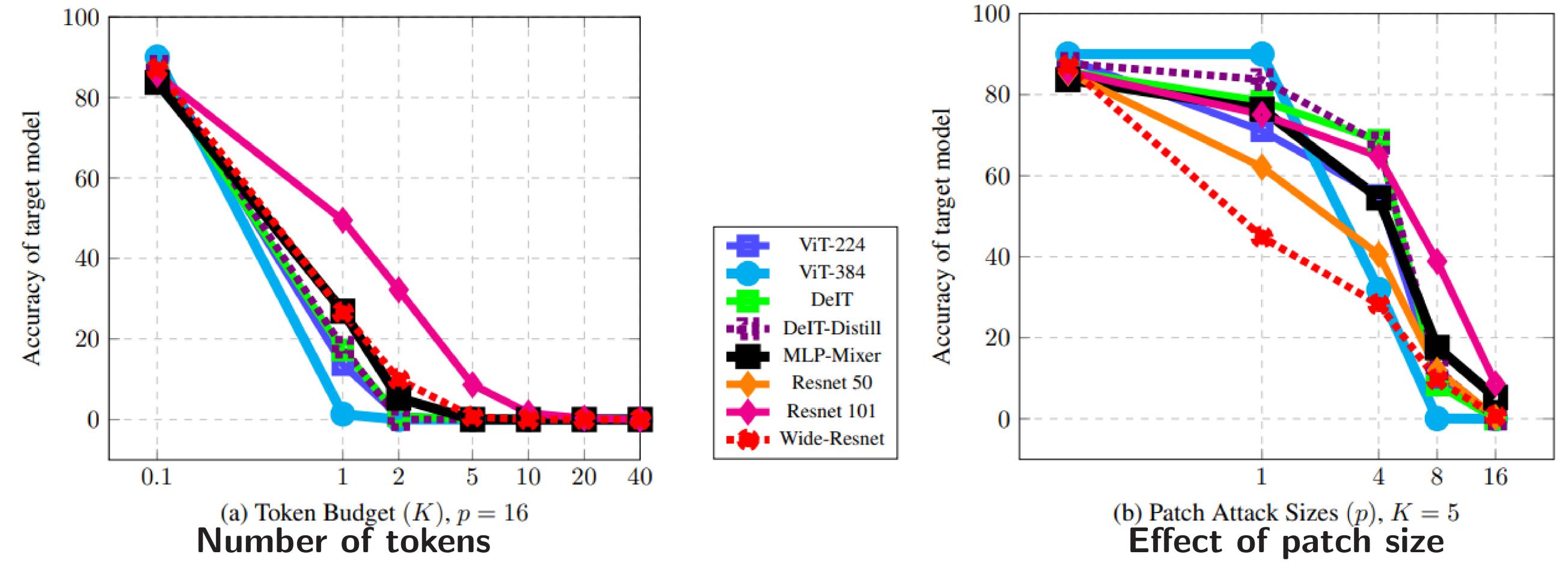
- ► ViT-(224, 384)
- ► DelT (hard & soft distillation)
- ► MLP-Mixer
- ► Resnets (50, 101, Wide)

2: while $dof(x) \neq y$ OR MaxIter $\mathbf{x}_{b_k} = \mathbf{x}_{b_k} + \nabla_{\mathbf{x}_{b_k}} L; \quad \forall \quad b_k \in \{b_1, \ldots, b_K\}$ 3: $\mathbf{x}_{b_k} = Project_{\epsilon_{\infty}}(\mathbf{x}_{b_k})$ (optional) 4: 5: end while

Attacks

- Sparse Attacks
- ► Token attacks $(p = 16 \times 16)$
- Mixed norm attacks

Results





Mixed	Norm	attacks
-------	------	---------

Model	Clean	Token Budget		
		1	2	5
ViT-224	88.70	68.77	50.83	15.28
ViT-384	90.03	53.48	28.57	4.98
DeIT	85.71	72.42	46.84	6.31
DeIT-Distilled	87.70	68.77	54.15	16.61
Resnet-101	85.71	69.10	55.14	32.89
Resnet-50	85.38	67.44	55.81	31.22
Wide Resnet	87.04	54.81	32.89	11.62
MLP-Mixer	83.78	63.78	37.87	5.98

Saliency v/s Random Tokens

