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Abstract

Vision transformers rely on a patch token based self at-
tention mechanism, in contrast to convolutional networks.
We investigate fundamental differences between these two
families of models, by designing a block sparsity based
adversarial token attack. We probe and analyze trans-
former as well as convolutional models with token attacks
of varying patch sizes. We infer that transformer models are
more sensitive to token attacks than convolutional models,
with ResNets outperforming Transformer models by up to
∼ 30% in robust accuracy for single token attacks.

1. Introduction
Motivation: Convolutional networks (CNNs) have shown
near human performance in image classification [1] over
non-structured dense networks. However, CNNs are vulner-
able to specifically designed adversarial attacks [2]. Several
papers in adversarial machine learning literature reveal the
brittleness of convolutional networks to adversarial exam-
ples. For example, gradient based methods [3, 4] design a
perturbation by taking steps proportional to the gradient of
the loss of the input image x in a given `p neighborhood.
This has led to refined robust training approaches, or de-
fenses, which train the network to see adversarial examples
during the training stage and produce the unaltered label
corresponding to it [5, 6].

Vision transformers (ViT) were introduced [7], as a net-
work architecture inspired by transformers [8] which have
been successfully used for modeling language data. ViTs
rely on self attention [8], a mechanism that allows the net-
work to find correlations between spatially separated parts
of the input data. In the context of vision, these are small
non-overlapping patches which serve as tokens to the trans-
former. ViTs and more recently distillation based Data Ef-
ficient Image Transformers (DeIT) [9] have shown to have
competitive performance on classification tasks and rely on
pre-training on very large datasets. It is of imminent interest
to therefore study the robustness of self-attention networks.

There has been some work on adversarial robustness of
vision transformers. [10] show that under certain regimes,
vision transformers are at least as robust to `2 and `∞ PGD
attacks as ResNets. While `2 and `∞ threat models are
useful in understanding fundamental properties of deep net-
works, they are not realizable in the real world and do not
capture actual threats. Transformer based networks also in-
troduce the need for tokenizing the image, leading to an en-
coded bias in the input. We, therefore propose to analyse the
sensitivity of the architecture to token level changes rather
than to the full image.

Specifically, we attempt to answer: Are transformers ro-
bust to perturbations to a subset of the input tokens? We
present a systemic approach to answer this query by con-
structing token level attacks by leveraging block sparsity.

For this analysis, we point out some important vulnera-
bilities in vision transformers by constructing a token level
attack. As ViT models use patches as tokens, this leads us
to a natural “block-sparse” attack construction.
Our contributions: We propose a patch based block sparse
attack where the attack budget is defined by the number
of tokens the attacker is allowed to perturb. We identify
top salient pixels using the magnitude of their loss gra-
dients and perturb them to create attacks. We extend a
similar idea to block sparsity by constraining salient pix-
els to lie in non-overlapping patches. We probe three fam-
ilies of neural architectures using our token attack; self-
attention (ViT [7], DeIT [9]), convolutional (Resnets [11]
and WideResNet [12]) and MLP based (MLP Mixer [13]).

We make the following contributions and observations:

1. We propose a new attack which imposes block sparsity
constraints, allowing for token attacks for Transformers.

2. We show classification performance of all architectures
on token attacks of varying patch sizes and number of
patches.

3. We demonstrate that for token attacks accounting for the
architecture and token size, vision transformers are less
resilient to token attacks as compared to MLP Mixers
and ResNets.

4. For token attacks smaller than architecture token size,



vision transformers are comparably robust to ResNets.
5. We also specifically note the shortcomings of previous

studies on robustness of transformers [10], where ViTs
are shown to be more robust than ResNets.

6. With our token attacks we can break Vision transformers
using only 1% of pixels as opposed to `2 or `∞ attacks
which rely on perturbing all image pixels.

Related work: Threat models: Deep networks are vulner-
able to imperceptible changes to input images as defined by
the `∞ distance [14]. There exist several test-time attack
algorithms with various threat models: `p constrained [2,
4, 15], black-box [16, 17], geometric attacks [18, 19], se-
mantic and meaningful attacks [20–22] and data poisoning
based [23].
Defenses: Due to the vast variety of attacks, adversar-
ial defense is a non-trivial problem. Empirical defenses
as proposed by [5], [6], and [24] rely on adversarial data
augmentation and modified loss functions to improve ro-
bustness. [25, 26] propose preprocessing operations as de-
fenses. However, such defenses fail to counter adaptive at-
tacks [27]. [28], [29] and [30] provide methods that guaran-
tee robustness theoretically.
Patch attacks: Patch attacks [31] are practically realizable
threat model. [32–34] have successfully attacked detectors
and classifiers with physically printed patches. In addi-
tion, [35, 35] also show that spatially limited sparse pertur-
bations suffice to consistently reduce the accuracy of clas-
sification model. This motivates our analysis of the robust-
ness of recently invented architectures towards sparse and
patch attacks.
Attacks and Defenses for vision transformers: [10, 36]
analyse the performance of vision transformers in compar-
ison to massive ResNets under various threat models and
concur that vision transformers (ViT) are at least as robust
as Resnets when pretrained with massive training datasets.
[37] show that adversarial examples do not transfer well
between CNNs and transformers, and build an ensemble
based approach towards adversarial defense. [38] claims
that Transformers are robust to a large variety of corruptions
due to attention mechanism. However, these works consider
global perturbations only. Vision transformers on the other
hand, have a natural inductive bias with patches. [39] show
that ViTs are specifically vulnerable to patch-level transfor-
mations, leading to good in-distribution accuracies but poor
out-of-distribution performance. [40] present a certified de-
fense for patch attacks, where in ViTs outperform Resnets.
This points to a clear correlation between robustness and
patch (token) perturbations. We study this in greater de-
tail, specifically restricting ourselves to token-level attacks
in order to analyse this phenomenon in greater detail.

Algorithm 1 Adversarial Token Attack
Require: x0:Input image, f(.): Classifier, y : Original label, K:

Number of patches to be perturbed, p: Patch size. i← 0

1: [b1 . . . bK ]= Top-K of S(xb) =

√∑
xi∈xb

∣∣∣ ∂L(f(x,y))
∂xi

∣∣∣2, ∀b.

2: while dof(x) 6= y OR MaxIter
3: xbk = xbk +∇xbk

L; ∀ bk ∈ {b1, . . . , bK}
4: xbk = Projectε∞(xbk ) (optional)
5: end while

2. Token Attacks on Vision transformers
Threat Model: Let x ∈ Rd be a d-dimensional image, and
f : Rd → [m] be a classifier that takes x as input and out-
puts one of m class labels. For our attacks, we focus on
sparsity as the constraining factor. Specifically, we restrict
the number of pixels or blocks of pixels that an attacker is
allowed to change. We consider x as a concatenation of B
blocks [x1, . . .xb, . . . ,xB ], where each block is of size p.
In order to construct an attack, the attacker is allowed to
perturb up to K ≤ B such blocks for a K-token attack. We
also assume a white-box threat model, that is, the attacker
has access to the model including gradients and preprocess-
ing. We consider two varying attack budgets. In both cases
we consider a block sparse token budget, where we restrict
the attacker to modifying K patches or “tokens” (1) with an
unconstrained perturbation allowed per patch (2) a “mixed
norm” block sparse budget, where the pixelwise perturba-
tion for each token is restricted to an `∞ ball with radius ε
defined as K, ε-attack.
Sparse attack: To begin, consider the simpler case of a
sparse (`0) attack. This is a special case of the block sparse
attack with block size is one. Numerous such attacks have
been proposed in the past [41, 42]. The general idea behind
most such attacks is to analyse which pixels in the input im-
age tend to affect the output the most S(xi) :=

∣∣∣∂L(f(x,y))
∂xi

∣∣∣,
where L(·) is the adversarial loss, and c is the true class pre-
dicted by the network. The next step is to perturb the top s
most salient pixels for a s-sparse attack by using gradient
descent to create the least amount of change in the s pixels
to adversarially flip the label.
Patchwise token attacks:Instead of inspecting saliency of
single pixel we check the norm of gradients of pixels be-
longing to non-overlapping patches using patch saliency

S(xb) :=

√∑
xi∈xb

∣∣∣∂L(f(x,y))
∂xi

∣∣∣2, for all b ∈ {1, . . . B}.
We pick top K blocks according to patch saliency. The ef-
fective sparsity is thus s = K · p. These sequence of opera-
tions are summarized in Alg. 1.

We use non-overlapping patches to understand the effect
of manipulating salient tokens instead of arbitrarily choos-
ing patches. In order to further test the robustness of trans-
formers, we also propose to look at the minimum number of
patches that would required to be perturbed by an attacker.



For this setup, we modify Alg. 1 by linearly searching over
the range of 1 to K patches.
Mixed-norm attacks: Most approaches [35, 43] addition-
ally rely on a mixed `2-norm based sparse attack in order
to generate imperceptible perturbations. Motivated by this
setting, we propose a mixed-norm version of our modified
attack as well. In order to ensure that our block sparse at-
tacks are imperceptible, we enforce an additional `∞ pro-
jection step post the gradient ascent step. This is enforced
via Step 4 in Alg. 1.

3. Experiments and Results
Setup: To ensure a fair comparison, we choose the best
models for the Imagenet dataset [44] reported in [7], [9]
and [12]. The models achieve near state-of-the-art results in
terms of classification accuracy. They also are all trained us-
ing the best possible hyperparameters for each case. We use
these weights and the shared models from the Pytorch
Image models [45] repository. We restrict our analysis
to a fixed subset of 300 randomly chosen images from the
Imagenet validation dataset.
Models: In order to compare the robustness of transformer
models to standard CNNs, we consider three different fam-
ilies of architectures:(1) Vision Transformer (ViT) [7], Dis-
tilled Vision Transformers (DeIT) [9], (2) Resnets [11, 12]
and (3) MLP Mixer [13]. For transformers, [7] show that
best performing Imagenet models have a fixed input to-
ken size of 16 × 16. To ensure that the attacks are fair,
we scale the norm or patch budgets appropriatelyas per the
pre-processing used 1. We also scale the ε-norm budget for
mixed norm attacks to eight gray levels of the input image
post normalization. Additionally, we do a hyper parameter
search to find the best attacks for each model analysed.
Patch attacks: We allow the attacker a fixed budget of to-
kens as per Algorithm 1. We use the robust accuracy as
the metric of robustness, where a higher value is better. We
start with an attack budget of 1 token for an image size of
224×224 for the attacker where each token is a patch of the
size 16 × 16. In order to compensate for the differences in
the size of the input, we scale the attack budget for ViT-384
by allowing for more patches (3 to be precise) to be per-
turbed. However, we do not enforce any imperceptibility
constraints. We run the attack on the fixed subset of Ima-
geNet for the network architectures defined above. Fig. 1(a)
shows the result of our analysis. Notice that Transformer
architectures are more vulnerable to token attacks as com-
pared to ResNets and MLP-Mixer. Further, ViT-384 proves
to be the most vulnerable, and ResNet-101 is the most ro-
bust model. DeiT which uses a teacher-student network is
more robust than ViTs. We therefore conclude that distilla-

1In case of varying image sizes due to pre-processing, we calculate the
scaling factor in terms of the number of pixels and appropriately increase
or decrease the maximum number of patches.

tion improves robustness to single token attacks.
Varying the Token budget: For this experiment, we start
with a block-budget of 1 patch, and iterate upto 40 patches
to find the minimum number of tokens required to break an
image. We then measure the robust accuracy for each con-
straint and for each model. For this case, we only study at-
tacks for a fixed patch (token) size of 16× 16 and represent
our findings in Fig. 1(a). We clearly observe a difference
in the behavior of ViT versus ResNets here. In general, for
a given token budget, ResNets outperform all other token
based models. In addition, the robust accuracies for Trans-
formers fall to zero for as few as two patches. The advan-
tage offered by distillation for single token attacks is also
lost once the token budget increases.
Varying patch sizes: We also study our attacks for varying
patch sizes. Smaller patch sizes are equivalent to partial to-
ken manipulation. We fix the token budget to be 5 or 15
tokens as dictated by the input size. Here, this corresponds
to allowing the attacker to perturb 5 p×p patches. Note that
a smaller partial token attack is weaker than a full token at-
tack. Surprisingly, the Transformer networks are compara-
ble or better than ResNets for attacks smaller than a single
token. This leads us to conclude that Transformers compen-
sate for adversarial perturbations within tokens. However,
as the patch size approaches the token size, Resnets achieve
better robustness. We also see that MLP-Mixers, while also
using the token based input scheme, perform better than
Transformers as the patch attack size increases.

However, this approach allows for unrestricted changes
to the tokens. Another approach would be to study the effect
of “mixed norm” attacks which further constrain the patches
to be imperceptibly perturbed.
Mixed Norm Attacks: For the mixed norm attacks, we anal-
yse the robustness of all networks for a fixed ε `∞ budget
of one gray level. We vary the token budgets from 1 to 5.
Here, almost all the networks show similar robustness for a
small token budget (K=1,2); refer Table 1. However, as the
token budget increases, Transformer and MLP Mixer net-
works are far more vulnerable. Note that this behavior con-
tradicts [10], where ViTs outperform ResNets. Since our
threat model leverages the token based architecture of the
Transformers, our attacks are more successful at breaking
ViTs over Resnets.
Ablation Study: Saliency v/s Random Selection. We also
analyse the efficacy of using the saliency metric to select
vulnerable patches. To compare, we randomly select 1, 2
or 5 tokens and run steps 2-4 from Alg. 1 with an `∞ con-
straint of 8/255. Fig. 2 shows the results of the experiment.
Our saliency based block-sparse attacks outperforms ran-
dom sampling and is able to reduce accuracies of all vision
transformer models for lower token budgets. This demon-
strates the necessity of using a saliency based metric to se-
lect tokens for attack.
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Figure 1. (a) Robustness to Token Attacks with varying budgets (p = 16). Vision transformers are less robust than MLP Mixer and
ResNets against patch attacks with patch size matching token size of transformer architecture, (b) Token attacks with varying patch
sizes.K = 5 When the attack patch size is smaller than token size of architecture, vision transformers are comparably robust against patch
attacks, to MLP and ResNets.

Table 1. Robust Accuracy for Mixed Norm Attacks: The models
are attacked with a K, (1/255) Patch Attack. Note that for smaller
token budgets, the models perform nearly the same. However, as
the token budget increases, Resnets are more robust than Trans-
formers.

Model Clean Token Budget

1 2 5

ViT-224 88.70 68.77 50.83 15.28
ViT-384 90.03 53.48 28.57 4.98

DeIT 85.71 72.42 46.84 6.31
DeIT-Distilled 87.70 68.77 54.15 16.61

Resnet-101 85.71 69.10 55.14 32.89
Resnet-50 85.38 67.44 55.81 31.22

Wide Resnet 87.04 54.81 32.89 11.62

MLP-Mixer 83.78 63.78 37.87 5.98
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Figure 2. Saliency based Token sampling v/s Random Sam-
pling: The solid lines represent robust accuracies for our token
attack whereas dotted lines show the same for randomly sampled
tokens. Notice that our saliency based token attack is more suc-
cessful at constructing attacks with fewer tokens compared to ran-
dom sampling.

Sparse Attacks: The sparse variant of our algorithm re-
stricts the patch size to 1×1. We allow for a sparsity budget

of 0.5% of original number of pixels. In case of the standard
224 × 224 ImageNet image, the attacker is allowed to per-
turb 256 pixels. We compare the attack success rate of both
sparse attack and patch-based token attack at same sparsity
budget; to compare we chose 1, 16 × 16 patch attack (re-
fer Table 2). We see that as is the case with token attacks,
even for sparse attacks, vision transformers are less robust
as compared to ResNets. With the same sparsity budget,
sparse attacks are stronger than token attacks; however we
stress that sparse threat model is less practical to implement
as the sparse coefficients may be scattered anywhere in the
image.

Table 2. Robust accuracies, s = 256 sparse and K = 1, 16×16
patch attack .

Model Norm constraint

Clean Sparse Patch

ViT 224 88.70 5.98 13.62
ViT 384 90.03 3.32 1.33

DeIT 85.71 4.65 17.27
DeIT (Distilled) 87.70 14.95 17.94

MLP Mixer 83.72 5.98 26.91

ResNet 50 85.38 13.95 19.90
ResNet 101 85.71 23.59 49.50
Wide Resnet 87.04 1.33 26.57

4. Discussion and Conclusion
Analysing the above results, we infer certain interesting

properties of transformers.
1. We find that Transformers are generally susceptible to

token attacks, even for very low token budgets.
2. However, Transformers appear to compensate for per-

turbations to patch attacks smaller than the token size.
3. Further, ResNets and MLP-Mixer outperform Trans-



formers for token attacks consistently.
We aim to further propose strong, certifiable defenses for

token attacks. Further directions of research also include
analysis of the effect of distillation and semi-supervised pre-
training.
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A. Related work
A.1. Defense models

The state of art defense approaches include solving a saddle point min-max optimization via PGD [5] with early stopping
[46], TRADES [6] which designs a robust loss consisting of natural loss and boundary loss and MART [47] which leverages a
modified loss that considers misclassified examples. Apart from algorithmic approaches, newer papers discuss optimal hyper-
parameter tuning as well as combination of regularizers from aformentioned techniques, choice of activation functions, choice
of architecture and data augmentation to extract best possible robust accuracies using pre-existing algorithms [48, 49].

A.2. Vision transformers

Vision transformers were recently introduced [7], as a new network architecture inspired by transformers [8] which have
been successfully used for modeling language data. Transformers rely on self attention [8], a mechanism that allows the
network to find correlations between potentially spatially different parts of the input data. In the context of language, this
has to do with different tokens from the input text data. For images, vision transformer breaks down images into smaller
patches. Each patch therefore serves as a token to the vision transformer. The position of each patch is also fed to the
vision transformer via a positional embedding. Vision transformers have been shown to have competitive performance on
classification tasks, at par with the state of art Neural Architecture Search based EfficientNet [50] and rely on pertaining to
very large datasets.

A.3. Transformers and Vision Transformers

While convolutional networks have successfully achieved near human accuracy on massive datasets [1, 51], there has
been a surge of interest in leveraging self-attention as an alternative approach. Transformers [8] have been shown to be
extremely successful at language tasks [52–54]. [55] extend this for image data, where in they use pixels as tokens. While
they some success in generative tasks, the models had a large number of parameters and did not scale well. [7] improve
upon this by instead using non-overlapping patches as tokens and show state of the art classification performance on the
ImageNet dataset. [9] further leverage knowledge distillation to improve efficiency and performance. Further improvements
have been suggested by [56], [57] and [58] to improve performance using architectural modifications, deeper networks and
better training methods. In parallel, [13] instead propose a pure MLP based architecture that achieves nearly equivalent
results with faster training time. However, studies on generalization and robust performance of such networks is still limited.
We discuss a few recent works below.

A.4. Transformers

The Transformer block was introduced by [8], for text input. The basic idea of the Transformer model is to leverage an
efficient form of “self-attention”. A standard attention block is formally defined as,

xout = Softmax
(
xWQWkx

T

√
d

)
xWV , (1)

where x ∈ Rd×n is an input string, xout ∈ Rd×n is the output of the self-attention block, WQ, WK andWV are the
learnable query, key and the value matrices. Note that x is actually a concatenation of n “tokens” of size d, which each
represent some part of the input. Multi-headed self attention stacks multiple such blocks in a single layer. The Transformer
model has multiple such layers followed by a final output attention layer with a classification token. This architecture makes
perfect sense for text where-in tokens are word or sentence embeddings, and each token therefore holds some semantic
meaning. These models are trained in an auto-regressive fashion with additional losses for downstream tasks.

However, extending the same architecture for images is non-trivial; primarily as the atomic components of an image are
pixels which hold little to no meaning by themselves. [55] propose a solution where they use pixels as tokens and train
generative models to solve problems such as image generation and super-resolution. However, the large dimensionality of
images forces the Attention blocks to be massively parameterized, leading to issues of scale. In order to remedy this, [7]
suggest using local image patches as tokens. This instantly reduces the number of tokens while also leveraging the local
consistency property of images. They find that in most cases, it is enough to use non-overlapping patches of 16 × 16 as
tokens to ensure near state of the art accuracies. One disadvantage of such massive models however is the requirement of
very large training datasets. [9] propose a data-efficient distillation based method to train Transformers. Their architecture
(DeIT) leverages a custom transformer based distillation token as well as standard student-teacher training approaches to
improve both the sample complexity and the performance over Vision Transformers.



A standard Resnet model, on the other hand, uses residual blocks:

xout = ReLU (x+ ReLU(Wx)) . (2)

A Resnet stacks several such residual blocks in succession followed by a classifier. The residual connection allows for easy
gradient flow and improves training. There have been several works that prove the generalization and efficacy of Resnets,
both empirically [11] and theoretically [59].

A.5. How resnets differ from transformers

In comparison with Resnets, which were the best performing image classifiers previously, we see that there are two major
structural differences. The first is that most Resnets downsample activations as we go deeper. This is supposed to help
reduce redundancies and propagate discriminative features. However, Vision Transformers with self-attention blocks appear
to preserve activation sizes throughout their depth. The second major difference is the structure of the Resnet block in
comparison with the Attention block. As is evident, any interaction between non-local pixel groups in Resnets is happens in
deeper layers. The initial layers tend to just focus on neighbourhood pixel interactions. However, the Attention mechanism
forces each layer of the transformer to consider both local and non-local interactions. There exist additional differences in
terms of the non-linearities involved and the number of parameters in each model.

The specific difference in the treatment of local and non-local pixel groups informs our choice of attack. While several
papers have previously studied the robustness of vision transformers in the standard adversarial setting, we specifically
consider the case where the attacker is only allowed to modify an image locally; for example a set number of tokens.

A.6. Saliency attacks

Such ‘salient’ pixels are often identified using the magnitudes of gradients. This idea, while not particularly new [60],
lends itself naturally to constructing adversarial attacks. Specifically, the idea is to only perturb a subset of the salient pixels
thus implicitly satisfying the sparsity constraint. JSMA [41] and Maximal-JSMA [42] leverage this observation to construct
k-sparse attacks by maximally perturbing k salient pixels. In maximal-JSMA, the authors calculate saliency of each pixel
usign the following equation;

S+(xi,c) =

{
0 if ∂f(x)c

∂xi
< 0 or

∑
c′ 6=c

∂f(x)′c
∂xi

−∂f(x)c
∂xi

·
∑

c′ 6=c
∂f(x)′c
∂xi

otherwise,
(3)

where xi is the pixel in question, c is the true class, and fi is a logit value specific to class i.
In this paper, we propose a patch based block sparse attack where the attack budget is defined by the number of patches

(blocks) the attacker is allowed to perturb. Our approach builds on JSMA [41] Maximal-JSMA [42], wherein the attacker
identifies top salient pixels using gradients and perturb them to create attacks. We extend a similar idea to block sparsity. The
main differences between JSMA and our approach lie in two places: (1) We use a simplified construction for the saliency
map that relies on the magnitude of the gradients with respect to each pixel, (2) instead of considering salient pixels, we
instead identify the most informative pixel blocks and further rely on gradient updates to generate an attack.

B. Experiments
For all experiments, we use SGD for optimization with a learning rate of 0.1 for a maximum of 100 steps for both variants.

B.1. Mixed norm attacks

For mixed norm block sparse attacks, we impose an additional `∞ bound (ε) on each pixel to enforce imperceptibility. We
run our experiments with a constraint of one gray level similar to [10]. Since each of these models scales the input images to
varying input ranges, we further scale each ε appropriately. We then use a projection step in Alg. 1 using clipping to enforce
the constraint.

C. Detailed Results



Model Original Adversarial Pertubation

ViT384

WideResnet

DeIT224

DeIT 224 (Distilled)

Figure 3. Patch attacks on Transformers: The attack images are generated with a fixed budget of 20 patches. Note that the perturbations
are imperceptible. The third column shows the perturbation brightened 10 times.

Table 3. Robustness v/s Token Budget

Model Token Budget

1 2 5 10 20 40

ViT-224 13.62 0.9 0.0 0.0 0.0 0.0
ViT-384 1.33 0.0 0.0 0.0 0.0 0.0

DeIT 17.27 0.9 0.0 0.0 0.0 0.0
DeIT (Distilled) 17.94 0.0 0.0 0.0 0.0 0.0

Resnet-101 49.50 32.22 8.64 1.66 0.33 0.0
Resnet-50 19.9 4.65 0.33 0.0 0.0 0.0

Wide-Resnet 26.57 9.96 0.66 0.0 0.0 0.0
MLP-Mixer 26.91 5.31 0.0 0.0 0.0 0.0

Table 4. Robustness v/s varying patch sizes

Model Attack patch sizes

1 4 8 16

ViT-224 71.09 55.15 9.30 0.0
ViT-384 68.77 31.89 0.06 0.0

DeIT 78.40 68.77 8.31 0.0
DeIT-Distilled 83.72 68.10 12.29 0.0
Resnet-101d 75.08 64.78 38.87 8.64

Resnet-50 62.12 40.53 11.96 0.33
Wide Resnet 44.85 28.24 9.63 0.66
MLP-Mixer 76.41 54.49 17.61 5.31
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Figure 4. Examples of mixed norm attacks
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