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ABSTRACT

Retinal Optical Coherence Tomography (OCT) scans are an
important diagnostic tool for ophthalmologists. These scans
provide a cross-sectional view of the retina for ophthalmolo-
gists to detect abnormalities. A common type of abnormal-
ity found in these scans is a Fluid Filled Region (FFR). In
this paper, we present a method to simultaneously classify
and localize FFRs within retinal OCT scans using a special-
ized Convolutional Neural Network (CNN). The training data
is weakly labeled, with only an indication of whether a scan
contains FFRs or not. We compare different architectures to
see which ones give us the best localization and classification
metrics. We have found that architectures using Dense Blocks
and Scaled Exponential Unit (SeLU) activations give us the
best localizations with a Mean Average Precision (mAP) of
0.75 on true positive images and a classification accuracy of
94.8%.

Index Terms— Optical Coherence Tomography, Eye,
Computer Aided Detection and Diagnosis

1. INTRODUCTION

Optical Coherence Tomography (OCT) is an important ad-
vancement in the field of retinal ophthalmology. These scans
give a microscopic, cross-sectional view of the retina thus giv-
ing the doctor a visualization of major retinal layers and possi-
ble abnormalities within them. A common type of abnormal-
ity found is a Fluid Filled Region (FFR). It consists of a lo-
calized expansion of the retinal extracellular space associated
with the intracellular space in the macular area [11]. Cysts
and subretinal fluid (SRF) are two instances of FFR. In this
paper, we refer to a scan with FFRs as an abnormal scan. Our
aim is to partially automate the process of visual inspection of
scans by training a CNN to not only distinguish between nor-
mal and abnormal scans, but also to localize the FFRs in any
scan the network predicts as abnormal. Manual localization of
FFRs in an OCT scan is a tedious, subjective and error prone
process. We solve the challenging problem of FFR local-
ization with weakly supervised techniques only, using OCT

Work done while at SigTuple Technologies, Bengaluru

frames labeled as abnormal or normal. Our work is motivated
by the recent work [12] which showed that a network local-
izes discriminative regions by using a Global Average Pooling
(GAP) [9] layer right before the softmax layer. In this paper,
we propose a specialized CNN architecture which consists of
convolutional layers with learnable downsampling, followed
by dense blocks [4] for simultaneous classification and local-
ization. We also compare the performance of different CNN
architectures using a GAP with respect to classification and
localization. We conclude that networks using the SeLU ac-
tivations and Dense Blocks [4] give the best localizations and
classification accuracies.

The paper is organized as follows: In Section 2, we elab-
orate on relevant related work. Section 3 discusses the techni-
cal details of the architectures. Experimental results are pre-
sented in Section 4. Finally, Section 5 concludes the paper.

2. RELATED WORK

Significant research has happened in recent years on gener-
ating weak localizations using CNNs. [12] shows that the
GAP layer encourages the network to learn discriminative re-
gions within an image. This was extended by [3] which gener-
ated weak segmentation masks of pulmonary nodules on lung
computed tomography (CT) scans.

Use of CNNss for analysis of retinal OCT scans has been
studied. [10] uses a 2D patch-based CNN to classify OCT
scan patches as containing one of a set of abnormalities, or
being normal. It uses a per-voxel segmentation label as in-
put. [1] presents a method to classify Retinal OCT volumes
as either normal or having Age-Related Macular Degenera-
tion (AMD) using a two stage training process. It first trains
a CNN to classify frames of the OCT volume using the tar-
get label of the 3D volume to which they belong. Next, these
pretrained weights are used to initialize the lower layers of a
much deeper network and predicts the label of an entire 3D
volume. It is observed that the network roughly learns the
locations of the AMD related abnormalities in the OCT vol-
ume, but no quantification is provided. [8] trains a CNN on
2.6 million OCT scans to classify them as being normal or
having AMD. It also visually shows the localization of abnor-
malities, but provide no quantification of the localization.



3. METHODOLOGY

Inspired by the work of [12], we train a network with a Global
Average Pooling (GAP) [9] layer right after the last convo-
lutional layer to simultaneously perform image classification
and weakly supervised localization. A GAP [9] layer applied
to an input with spatial dimensions n x m with k feature maps
produces a vector v of size k with each v; defined as in equa-
tion (1). M; is the i™ feature map of the input with activa-
tion al, , at position (z,y). The output of the GAP layer is
then fed into a fully connected layer to calculate the class ac-
tivations for the L'" class as shown in equation (2). w1, 18
weight connecting the i" value of v to the output of class L.
The class probabilities can be calculated from these class ac-
tivations by applying a softmax on them. The class activation
maps (CAM) [12] or the discriminative feature localizations
for the L™ class are then calculated as in equation (3)
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Each CAM/, can be interpreted as the localization of the
most discriminative features of an image that make it belong
to the class L. Recent work by [3] suggests that using lower
convolutional layers as input to the GAP layer produces better
localizations at the cost of classification accuracy. To com-
bine the features of the lower convolutional layers without
significantly sacrificing classification accuracy, we replace
the traditional convolutional blocks with Dense Blocks [4]
where every convolutional layer uses the concatenated fea-
ture maps of all the convolutional layers in the block which
appear before it.

4. EXPERIMENTS AND RESULTS

In this work we compare a number of neural networks with
different architectures.

4.1. Data and Preprocessing

Our dataset consists of 408 cystic and 809 normal retinal OCT
scan images collected from a local hospital. The frames were
randomly selected from scans acquired by a Heidelberg Spec-
tralis OCT machine. The frames were then labeled as exam-
ples of cystic edema (FFR) or normal by a panel of three ex-
pert ophthalmologists. The dataset was randomly split into
training (90%) and validation (10%) sets. A separate test set
of 117 images with expert annotated ground truth bounding
polygons (not exact segmentation masks) for all visible cysts

was used to calculate the localization metrics of each model.
Each scan in the dataset was resized to 256 x 512 and denoised
using Non-local Means Denoising [2].

4.2. Localization and Classification Metrics

For each scan in the test set, we calculate the CAM for the
cystic class on the original scan and its horizontally flipped
version. We then appropriately align the two CAMs and take
their average. Next, we binarize the CAM with a threshold
which is a fraction of the maximum value of the CAM. We
treat these binary masks as the localization predictions of our
network. A localization is counted as a true positive if the pre-
dicted localization overlaps at least 10% of the ground truth
bounding polygon. If the overlap is less than 10%, then it is
counted both as a false positive and as a false negative. We
then calculate the precision and recall at different thresholds
and plot the precision-recall curve. The area under this curve
gives us the Average Precision (AP) of a particular network
for the cystic class. Since this is a binary classification prob-
lem, the average precision becomes the mAP. The F1-Score
for each network is then calculated at the best threshold value.

The classification ability of our networks was measured
by calculating the accuracy, sensitivity and precision of each
network on our test set.

4.3. Models

In an attempt to combine the outputs of the features of the
lower level convolutions without significantly impacting the
accuracy, we used Dense Blocks [4] in our CNN architecture.
We also experimented with the SeLU and ReLU activation
functions and the batch normalization [5] technique. In all our
networks, we have made extensive use of rectangular 3 x 5
kernels to ensure the ratio of the receptive field along each
dimension is equal to the aspect ratio of the original image.
The details of the best performing networks are as follows:

e SeLU-DenseNet: This network uses the SeLU nonlin-
earity after each convolution and uses Dense Blocks.
The network consists of a downsampling block (de-
scribed in Table 1) and feature learning blocks. The
downsampling block’s purpose is to compress the in-
put to a good lower dimensional representation. It is
followed by a feature learning block which consists of
four dense blocks [4] each followed by a convolution
with 32 output feature maps. As shown in Table 2, the
dense block contains 3 convolutions with a growth rate
of k = 32. All the convolutions in the feature learn-
ing block use a 3 x 5 kernel and ”same” padding. This
network was trained using the Adam optimizer [6] with
a learning rate of 1 x 10~° and a L2 regularization of
5x 1074,

e SeLU-ConvNet: The network consists of a downsam-
pling (Table 1) and a feature learning block with 12



Layer | Num. feature | Kernel | Stride
num. maps size size
1 1 2x2 2
2 16 3x5 1
3 16 2x2 2
4 32 3x5 1
5 32 2x2 1
6 32 2x2 2

Table 1: Structure of the downsampling block. All layers are
convolutional.

Layer | Num. feature | Kernel Input
num. maps size layers
1 32 3X5H Input
2 32 3x5 Input, 1
3 32 3x5 | Input, 1,2

Table 2: Structure of the dense block. All layers take as input
concatenation of outputs from previous layers in the block.
The final output is the concatenation of all layers and input.

convolutional layers each with a 3 x 5 kernel, 64 output
feature maps and ”same” padding. All the convolutions
in the network are followed by a SeLU nonlinearity.
This network was trained using Adam with a learning
rate of 1 x 107° and a L2 regularization of 5 x 1074,

e ReLU-DenseNet: The network consists of a downsam-
pling block (Table 1) and a feature learning block with
1 dense block (Table 2) which is followed by a convolu-
tion with 32 output feature maps. All the convolutions
in the network are followed by batch normalization [5]
and a ReLU nonlinearity. This network was trained us-
ing Adam with a learning rate of 1 x 10~* and a L2
regularization of 5 x 1073,

e ReLU-ConvNet: The network consists of a downsam-
pling block (Table 1) and a feature learning block with
4 convolutional layers each with a 3 x 5 kernel, 64 fea-
ture maps and “same” padding. All the convolutions in
the network are followed by batch normalization and
a ReLU nonlinearity. This network was trained using
Adam with a learning rate of 1 x 10~* and a L2 regu-
larization of 5 x 1073,

Multiple versions of each architecture were tried out, with
varying learning rates, L2 regularization, etc. Only the best
performing version of each architecture are described above.

Network | mAP | FI Score |
SeL.U-DenseNet | 0.75 0.86
SeLU-ConvNet 0.70 0.84

ReLU-DenseNet | 0.18 0.71
ReLLU-ConvNet | 0.09 0.45

Table 3: Localization Metrics on True Positive predictions

Network | mAP [ FI Score
SeLLU-DenseNet | 0.63 0.82
SeLU-ConvNet 0.55 0.76

ReLU-DenseNet | 0.05 0.25
ReLU-ConvNet | 0.04 0.28

Table 4: Localization Metrics on all abnormal predictions

4.4. Results

As can be seen from Tables 3, 4 and 5 SeLU-DenseNet
and SeLU-ConvNet have significantly outperformed ReLU-
DenseNet and ReLU-ConvNet in both classification and
localization. SeLU-DenseNet performed better than SeL.U-
ConvNet in localizing the FFRs while both have the same
classification accuracy on the test set. Tables 3 and 4 suggest
that the Dense Blocks [4] seemed to have significantly helped
the neural network with SeLLU activations to localize better.
This seems to be due to the property of SeL.U networks con-
verging better with lower amounts of data [7]. Figures 2 and 3
show the localizations produced by the SeL.U-DenseNet on a
few scans from the test dataset.

Despite multiple attempts with different architectures as
well as carefully tuning hyper-parameters, we were not able
to get the ReLU networks to converge at a reasonable test set
accuracy as all of them suffered from severe overfitting.

5. CONCLUSION

Simultaneous localization and classification using weak
frame level labels is an active area of research for medical
images. In medical images, expert annotations for local-
ization are tedious and time consuming unlike image level
class labels. We show that we can simultaneously localize

Network Acc.% | Sens.% | Prec.%
SeLLU-DenseNet | 94.8 96.6 934
SeLU-ConvNet 94.8 98.3 92.0
ReLU-DenseNet | 45.2 6.7 30.7
ReLU-ConvNet | 48.7 55.9 49.2

Table 5: Classification Metrics
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Fig. 1: The variation of the F1-Score with overlap percentage.

(c) Predicted Localization

Fig. 2: Two examples from the test set where SeLU-
DenseNet has localized quite well. Here we have encoded
the original scans in the green-channel.

abnormalities in an image as well as classify the same image
as abnormal or normal using image level class labels as a
solution to the above problem.

Our experiments also show that using SeLU activations
provides better convergence than RelLU activations and that
Dense blocks gives better localization of FFRs in abnormal
OCT scans than standard convolutions. Our method achieves
a state of the art results with a true positive mAP score of 0.75
for localization and a precision of 93.4% with a sensitivity of
96.6% on the test dataset of OCT scans.

In future work, we hope to extend this method for other
pathologies diagnosed with an OCT scan, including epiretinal
membranes, hard exudates and RPE changes, spongy-edema,
drusen etc., thereby being able to clearly localize and iden-
tify a set of clinically relevant set of abnormalities in a retinal
OCT. In addition, we also would be analyzing the effect of
more data on the above architecture. We also hope to prove
that this method has potential applications for other medical

(a) Original scan

(b) Ground truth bounding Polygon

(c) Predicted Localization

Fig. 3: Two examples from the test set where SeLU-
DenseNet has not localized well. Interestingly, in both the
cases the network has localized another type of abnormality
called a spongy-edema.

imaging modalities.
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