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Abstract

Generative Adversarial Networks (GANs), while widely suc-
cessful in modeling complex data distributions, have not yet
been sufficiently leveraged in scientific computing and de-
sign. Reasons for this include the lack of flexibility of GANs
to represent discrete-valued image data, as well as the lack
of control over physical properties of generated samples. We
propose a new conditional generative modeling approach (In-
vNet) that efficiently enables modeling discrete-valued im-
ages, while allowing control over their parameterized geo-
metric and statistical properties. We evaluate our approach on
several synthetic and real world problems: navigating man-
ifolds of geometric shapes with desired sizes; generation of
binary two-phase materials; and the (challenging) problem of
generating multi-orientation polycrystalline microstructures.

1 Introduction
Motivation. Generative Adversarial Networks (GANs) have
proven to be highly successful in synthesizing samples aris-
ing from complex distributions, including face images (Rad-
ford, Metz, and Chintala 2016), content generation (Jin et
al. 2017), image translation (Isola et al. 2017), style trans-
fer (Zhu et al. 2017), and many others. Our motivation
for this paper arises from computational engineering de-
sign, for which promising progress has been made in areas
such as drug discovery (Blaschke et al. 2018), molecule de-
sign (Sanchez-Lengeling and Aspuru-Guzik 2018), and 3D
modeling (Wu et al. 2016).

Computational design problems often are accompanied
by stringent geometric and statistical constraints that all
valid solutions are required to satisfy. These constraints are
generally informed by the physics of the problem, or by
manufacturing limitations. Additionally, the solution spaces
for several design problems are often discrete (integer) val-
ued, often combinatorially complex, and generally non-
differentiable, therefore disallowing the use of scalable tra-
ditional optimization tools. Machine learning methods such
as GANs show the promise of sidestepping some of these
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concerns. However, there remain several challenges that
must be overcome for realistic design problems.
Challenges. When standard GAN models are applied to
solve real-world design problems, several challenges arise.
It is well known that GANs incur dramatically high sam-
ple complexity. For example, BigGAN (Brock, Donahue,
and Simonyan 2019) requires 14 million (natural) images
trained over ∼24K TPU-hours, which is well beyond the
reach of normal computing environments. This cost is ex-
acerbated in scientific and engineering design problems that
rely on expensive simulations for training data generation.
A possible solution is to use a priori domain knowledge
about the physics of the design problem to reduce training
data requirements, but the standard GAN framework does
not leverage such knowledge.

Further, designers often require fine-grained input control
over specific parameters of the search space. For example,
in (computational) materials design, the designer may wish
to adjust material composition, grain sizes, or other material
property parameters on the fly. Conditional GANs (Odena,
Olah, and Shlens 2017; Mirza and Osindero 2014) do pro-
vide some amount of input control, but these are coarse: the
training data has to be carefully binned due to the categorical
conditioning involved.
Our contributions. We introduce InvNet, an architecture
that extends deep generative models (such as GANs) by
encoding user-specified geometric (discrete) and statistical
constraints. Our InvNet generative model has the dual ad-
vantage of being able to learn implicit features from train-
ing data, while also being able to explicit user-specified
invariances. Similar to GANs, we pose the InvNet train-
ing problem as a minimax game and propose a three-way
alternating-optimization style training algorithm. Our algo-
rithm requires minimal parameter tuning and gives stable re-
sults across a wide range of problem domains.

We showcase our framework in the context of two chal-
lenging problems in materials informatics. In both cases, the
physics governing the formation of such microstructures are
typically very complex and involve solving nonlinear high-
order partial differential equations (PDEs) that are compu-
tationally very intensive. In both problems, we show that
InvNet is successful in generating a large, diverse variety



of material microstructure samples that respect the specified
invariances, as well as enables flexible user navigation of the
design space.
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Figure 1: Examples from the manifold of images of two circles
(with user-specified positions and radii) synthesizes using various
generative models. The bar/whisker plots show the accuracy of
each model for respecting the specified invariances (center posi-
tions and radii for the ith circle are represented by (cix, c

i
y) and ri

respectively). WGAN provides no explicit control over the param-
eters of the generated circles, while cGAN and AC-GAN fail to
generate satisfactory images. Our proposed InvNet model not only
learns to reproduce correct shapes, but also provides effective user
control over the location and size of the shapes. The large standard
deviation for the properties show that the other approaches fail to
learn the associated invariances.

Our specific contributions are as follows:
1. We describe InvNet, a novel generative modeling frame-

work which respects user-defined geometric and/or statis-
tical invariances.

2. We present a rigorous experimental analysis for the syn-
thetic example of generating composite images of shapes
with user-controlled positions and sizes. We also show su-
perior performance over related modeling methods such
as conditional GANs.

3. We demonstrate the efficacy of InvNet for two challeng-
ing real-world applications in material discovery: (1) gen-
erating binary microstructures with specified statistical
properties; (2) poly-crystalline (metal alloy) microstruc-
tures with specified geometrical and statistical properties.

Paper outline. We discuss relevant literature for generative
models in general and for the specific case of computational
design in Sec. 2. We then describe our approach in detail
in section Sec. 3. Sec. 4 presents an illustrative example for
InvNet where we train a generative model to generate sim-
ple shapes with specified geometric constraints such as po-
sition and size. Subsequently, we present two real world ap-
plications in materials design and discovery; for two phase
and multi-orientation poly-crystalline materials respectively
in Sec. 5 and Sec. 6. Finally we conclude with a brief discus-

sion in Sec. 7. Additional details and results can be found in
the Appendix.1

2 Related work
Due to tight page-limit constraints, we defer a full discussion
of related work to the appendix.
Conditional GANs. Conditional GANs(cGANs) (Mirza
and Osindero 2014) and AC-GANs (Odena, Olah, and
Shlens 2017) condition the generator on categorical labels
to control the output class by modifying the discrimina-
tor architecture, while InfoGAN (Chen et al. 2016) per-
mits control over output parameters through an information-
maximization loss term. While the goal of our InvNet
model is thematically similar, InvNet is more flexible in
that we enable fine-grained (continuous) control of the out-
put. To achieve this, InvNet requires important architec-
tural choices: as opposed to cGANs where the discrimina-
tor is modified, we use a specific closed-form invariance
checker in addition to a standard GAN discriminator. This
two-pronged setup reflects building an associative mapping
for the invariance while also discriminatively learning other
features from training data. We elaborate in Sec. 3.

The approach of (Stinis et al. 2018) employs a noisy data-
training approach with mathematical constraints in order to
extrapolate the generator distribution. While they use the ap-
proach of weakening the discriminator with noisy inputs,
we use an alternating optimization scheme to encode invari-
ances. Additionally, our architecture is extensible to more
general geometric and discrete constraints. Xu et al. demon-
strate the use of posterior regularization to embed domain
knowledge in structural GANs. Finally, (Jiang et al. 2019)
use segmentation masks to enforce structural constraints;
this resembles our geometric constraint modelling.
Materials design. An entire sub-field in computational
material science is devoted for the synthetic generation
of material microstructures (Ganapathysubramanian and
Zabaras 2008; 2007; Roberts 1997). Examples of syn-
thesis methods include Gaussian random fields (Roberts
1997), optimization-based methods (Yeong and Torquato
1998), and, multi-point statistics (Feng et al. 2018). Re-
cent advances also involve the generative modeling tech-
niques (Sanchez-Lengeling and Aspuru-Guzik 2018) that
largely rely on the massive training datasets. Most of these
methods involve large scale expensive physics simulations
to generate a massive number of candidate designs, followed
by rejection-sampling to choose the desired solutions. On
the other hand, InvNet is directly trained to enforce statis-
tical and geometric constraints while also permitting user-
defined exploration of the solution space.

3 The InvNet model
Consider a data distribution Pdata defined over a set D ⊆
Rd, and a list of differentiable invariance functions Rd →
R : Ii(·), i = 1, 2, .., r. The aim of InvNet is to generate
new samples x from D that satisfy an invariance, Ii(x) =
0, ∀i = 1, 2, .., r. We define our generator to be a function

1https://bit.ly/2OaHuFv



Gθ : Rk → Rd parameterized by θ. Let z represent a k-
dimensional latent input vector to the generator.
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Figure 2: Our proposed InvNet model introduces an invariance
function (I(·)) along with the traditional generator (G) and dis-
criminator (Dψ). While the discriminator learns the implicit fea-
tures of the image through simultaneous training of both D and
G, the invariance enforces a statistical/geometric constraint on the
generator (Gθ) through minimizing an invariance loss. InvNet han-
dles discrete (integer) valued invariances by relaxing the integer
valued data into a probabilistic space using pixelwise softmax acti-
vations.

In the standard GAN setup (Goodfellow et al. 2014), the
generator is trained by posing a two-player game between
the generator (G) and the discriminator (D), where the dis-
criminator is a function Dψ : Rd → R parameterized by ψ.
The training objective of GANs is given by:

L(θ, ψ) = Ex∼Pdata [f(Dψ(x))]+Ez∼Pz [f(−Dψ(Gθ(z)))] ,
(1)

for some monotonic function f : R → R and Pz being
a known distribution. We focus on Wasserstein GAN (Ar-
jovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017)
where f(t) = t.

In order to encode invariances, we propose solving the
following minimax game which will produce Invariance
Networks (InvNets):

min
θ

max
ψ

L(θ, ψ) + µLI(θ), (2)

where LI(θ) :=
∑n
i=1 Ez [Ii(Gθ(z))] .

We solve the minimax game in a fashion similar to GAN
training; we alternately adjust the generator parameters θ
and the discriminator parameters ψ via gradient updates.
However, due to the presence of the additional invariance
term in L̄(θ, ψ), we find in practice that a three-way update
rule works well: a GAN-like update of θ via gradient steps
of L(θ, ψ) keeping ψ fixed; a GAN-like update of ψ via gra-
dient steps of L(θ, ψ) keeping θ fixed; and an update of θ
via gradient steps of LI . See Alg 1.
Role of the input vector. We define the generator input as
the concatenated vector [z, r]T with z referring to a random
vector sampled from a known distribution while r parame-
terizes the invariances. Specifically, r is a vector that corre-
sponds to tunable geometric or statistical parameters of the

Algorithm 1 Training InvNets
Require: Set learning rates, termination conditions; Training data:

x ∼ [c]d.
1: while LI large and θ has not converged do
2: for l← 1 to NG do
3: θ ← θ − ηG∇θL̄(Gθ(z, r)) . Generator update
4: end for
5: for m← 1 to ND do
6: ψ ← ψ + ηD∇ψL̄(x̄) . Discriminator update
7: end for
8: for n← 1 to NI do
9: θ ← θ − ηD∇θLI . Projection step

10: end for
11: end while

generated data; thus allowing for user control. For e.g, for
the case of generating a set of circles on a plain background,
r would be a concatenated vector of radii and centers of the
respective circle.
Differences from Conditional GANs. While noting that
InvNet has a few similarities to conditional GAN mod-
els such as cGANs (Mirza and Osindero 2014) and AC-
GANs (Odena, Olah, and Shlens 2017), we list the major
differences and advantages.

In particular, while cGANs (Mirza and Osindero 2014)
surrogate the conditional distribution, Px|y by passing both
the data and label to the discriminator, the discriminator in
InvNet learns to model the true data distribution, Px unbi-
ased by the constraints.

Conversely, AC-GAN modifies the discriminator to per-
form the simultaneous task of discrimination and classifica-
tion or regression. InvNets are essentially simplifications of
this idea. The invariance function, Ii(.) can be thought of as
a fixed auxiliary model, that is decoupled from the discrim-
ination task. This allows the discriminator to be less con-
strained in comparison, thus forcing the generator to learn
the true data distribution better. Additionally, due to the
closed form representation of the fixed auxiliary loss, the
data requirements in terms of variety is reduced.
Variations of alternating optimization. As mentioned
above, we optimize our multi-objective formulation by al-
ternately optimizing over the three sub-components of L̄, as
presented in Alg. 1. Our choice of using alternating opti-
mization is informed by insights in recent work (Mokhtari,
Ozdaglar, and Pattathil 2019) that show that regular gradi-
ent descent for minimax games diverges, while methods that
take intermediate gradient steps, such as extra-gradient de-
scent, converge to stable Nash equilibria.

4 Toy example: Generating shapes with
geometric constraints

We start with the stylized problem of learning image mani-
folds, where the training data consists of simple shapes pa-
rameterized by geometrical quantities such as size and posi-
tion. Here, we aim to train an InvNet that generates shapes
with user-specified sizes and/or positions.

Consider the illustrative problem of generating two circles
of varying sizes and positions on a plain background. While
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Figure 3: Performance of InvNet in respecting target invariances.
The bar plots show the centroids (cix, c

i
y) and radii, ri for images

generated by InvNet for the two circle task. Note that InvNet suc-
cessfully generates images that respect the required target invari-
ance value (represented by the dashed horizontal line) with very
low error.

traditional GANs can generate such shapes by learning from
data, suppose that we additionally require independent con-
trol over the radius and position of each of these circles.

Let us first consider how this can be achieved for a single
circle. A binary image with a white circle satisfies two in-
variances: (1) the area occupied by the white pixels should
be π times the radius squared; and (2) the position of the cir-
cle center is the center of mass of a single, connected com-
ponent. The first invariance can be easily expressed in the
form of a continuous, differentiable loss function:

Larea
I (x, r) =

∣∣∣∣∣∑
i

xi − πr2
∣∣∣∣∣
2

, (3)

where r is the target radius.

(a)
(b)

(c)
(d)

Figure 4: Generated sample with multiple shapes. (a) & (c) Orig-
inal datasets. The first dataset consists of images with two circles
while the second consists of images with a circle and a square. (b)
Generated images for the two-circle dataset. InvNet is successfully
trained to generate circles of target radii and position. (d) Similarly,
another example of generating simple shapes with a required area
and position. The invariance function forces the generator to learn
the mapping between the input condition and the target property
for each connected component. Refer appendix Figs. 11 and 12 for
additional results.

The second invariance, encoding the centroid of the circle
requires the use of central moments, which is a well-known
mechanism in image processing to calculate the center of
mass of a connected component.

(cx, cy) =
(µ1,0(x)

µ0,0(x)
,
µ0,1(x)

µ0,0(x)

)
, (4)

µm,n(x) =

w∑
k=1

h∑
l=1

kmlnxkh+l. (5)

We use this to construct an invariance function that min-
imizes the `2-error between the target centroid and the cal-
culated centroid of the generated image.

Lpos
I (x, cx, cy) =

∥∥∥∥[µ1,0(x)/µ0,0(x)
µ0,1(x)/µ0,0(x)

]
−
[
cx
cy

]∥∥∥∥2
2

(6)

Using Eq. 3 and Eq. 6 as invariances, it is straightforward
to train InvNet to generate a single connected component
(such as a circle) while controlling the radii and positions
of the circle. The problem, however, becomes non-trivially
challenging when multiple such connected components are
involved, since the closed form expressions in Eq. 3 and
6 only provide meaningful information only when one ge-
ometrical figure exists in the image. We are not aware of
(differentiable) invariance functions which calculate similar
geometric quantities for the case of multiple connected com-
ponents.

To overcome this challenge, we use the following intu-
ition. The discrete constraint of having two connected com-
ponents can be treated as a coloring (or assignment) prob-
lem, where each pixel can be assigned to one of three pos-
sibilities: either of the connected components, or neither of
them (background). Therefore, this intuition motivates us to
relax the assignment constraint by training a generator with
three color channels, each corresponding to one of the as-
signment categories.

Formally, we describe the setup as follows. Consider a
dataset, x ∼ [c]d where each pixel can take a value in
{0, 1, . . . , c}. For the case described above, the pixel value
defines the class of that pixel; whether it lies in any of the c
circles, or the background. In order to train InvNet to gener-
ate such images while enforcing the area and the positional
invariance, we propose two modifications. The first is to en-
code the input (training) dataset into pixelwise one-hot rep-
resentation i.e. x̄ ∈ {0, 1}(c+1)×d. Secondly, the generator,
G(.) is now forced to generate (c + 1) channels in its final
layer. Consequently, in order to encode the assignment prob-
lem, we also add a pixelwise softmax activation to the final
layer; allowing us to relax the discrete generation problem
to a continuous bounded space, [0, 1](c+1)×d.

The problem now decomposes to that of generating a sin-
gle connected component in each channel, with the specified
invariances according to Eq. 3 and Eq. 6 defined indepen-
dently for each channel as follows:

LI(Gθ(z, r)) =
c∑
i=1

Larea
I (Gθ(z, r)i, ri) + L

pos
I (Gθ(z, r)i, ri),

(7)
where subscript refers to the index of the channel.

Following this approach, we train an InvNet with
generator, G(z, r), that takes a tuple of the two radii



and the centroids respectively as input2. The dataset
consists of two non-overlapping circles with varying
radii, r ∈ {14, 15, . . . , 32} and centroids, (cx, cy) ∈
{30, 31, . . . , 96}2 (a unit of pixel) sampled uniformly to
avoid bias. We discard any samples if any two figures over-
lap each other to obtain datasets with non-overlapping ge-
ometrical figures. Additionally, clusters of pixels with label
1 and 2 form two different figures while remaining pixels
are assigned to label 3 as a background of the image. The
training data consists of 30k images of size 128× 128.

During training, x is one-hot encoded so that the genera-
tor generates a tensor of 128 × 128 × 3. The discriminator
attempts to the generated pixelwise softmax distribution to
the input. The generator, discriminator, and the invariance
objectives are then optimized using the three-way alternat-
ing optimization method described. An important point to
note here is that while the invariance losses explicitly en-
code geometric properties of size and position, the shape is
learnt from the underlying data. Examples of generated im-
ages can be seen in Fig. 4.

We also show that InvNet can also be used to learn other
shapes from data while still enforcing geometric constraints.
For the second example, we consider a dataset of a circle and
a square on a plain background. We subsequently modify
the invariance functions appropriately. Note, however that
in this case, we input the target area of each shape so as
to not bias the generator towards either shape. The InvNet
is successful in learning to generate the two shapes (refer
Fig. 4.). We refer the reader to the appendix (Fig. 11 and
Fig. 12) for additional results.

We also analyse the efficacy of the model in encoding
the target invariances. We generate 1000 images for each in-
stance for a varied set of target radii and positions for the two
circle generation problem. As the results in Fig. 3 suggest,
InvNet is able to generate a large variety of examples while
accurately respecting the invariances. Additional results can
be found in the appendix (Fig. 17).
Comparisons. While InvNet does show promising perfor-
mance as described above, a question may arise about the
use of an auxiliary loss as compared to using conditional
GANs (Mirza and Osindero 2014; Odena, Olah, and Shlens
2017) that use surrogate neural networks for similar tasks.
We, therefore, conduct a comparative study where we train
a WGAN, a cGAN and an ACGAN to generate multiple cir-
cles with a required target radius and position. For fair com-
parisons we train all models with the same generator and for
the same number of iterations.

We observe that InvNet successfully generates circles
with the required constraints. On the other hand, the cGAN
fails to capture the data distribution whereas the ACGAN
fails to generate images satisfying the required conditions.
Fig. 1 shows a detailed analysis for a single target orienta-
tion. Additionally, InvNet converges faster than AC-GANs
(∼ 3k iterations to ∼ 23k iterations) for generating ac-
ceptable circles. Additional analysis can be found in the ap-

2All code and models can be found at https://github.com/
chomd90/invnet.git. A webapp showcsing the results of our models
can also be found at https://tiny.cc/invnet.

pendix.

5 Example: Two-phase microstructures

(a)

(b)

(c)

Figure 5: Binary microstructures. (a) Original dataset. (b) Gen-
erated microstructures. Each column is generated according to a
specific required volume fraction. (c) Bubble plot for 1000 images
for each input p1 value. The size represents the standard deviation.
Note that the error in volume fraction is less than 5% in all cases.

In computational material science, material distribution
is represented by an image describing the arrangement of
constituents within a material, whose statistics govern the
physical properties of the underlying material. Synthesizing
microstructures adhering to specific statistical properties is,
therefore, a crucial component of material discovery.

We focus on binary microstructures (corresponding to
black/white images) corresponding to two fluid constituents.
Generally, the first and second moments of the image are
useful statistical descriptions. Formally, we consider: (i) the
1st moment, p1, also called the volume fraction, and (ii) the
2nd moment, p2, also called the two-point correlation. The
former is a scalar, while the latter is a function. The statis-
tical moments are highly correlated with material properties
such as thermal conductivity and elastic behaviour.

The dynamics of binary microstructures exhibiting phase
separation are governed via the well-known Cahn-Hilliard
(CH) equation (Cahn and Hilliard 1958). This is a fourth-
order nonlinear PDE, and its solution requires a significant
amount of simulation time (see Table 1). Therefore, synthe-
sizing two-phase binary microstructures is computationally
very challenging. We remedy this by training an InvNet to
generate microstructures adhering to desired statistical prop-
erties. We consider two specific modes in this case; (1) gen-
erating microstructures with a required volume fraction, (2)



generating microstructures with a required; p2 correlation
curve. Each of the two statistical parameters inform various
material properties which can then be further analysed.

For generating microstructures with specific statistical
properties, the generator G(.) takes as input the latent vec-
tor, z ∼ N(0, I) and the corresponding parameters; r (either
p1 or p2). Since the first and second moments are differen-
tiable functions, we encode the desired statistical properties
into the InvNet formulation using the invariances:

LI = ‖Ipr (Gθ(z, pr))− pr‖22, (8)

where Ipr represent the functional forms of the moments,
and pr are the two moments appropriately.

For training the InvNet, we use a publicly available
dataset of 2D binary microstructures containing ∼ 34k im-
ages across the wide range of statistical moments (Pokuri et
al. 2019) (refer appendix for details). We train the InvNet
using Alg. 1.

The results in Fig. 5 show the generated images adher-
ing to target invariances. In order to analyse the efficacy
of InvNet, we generate 500 images for specific values of
moments; and calculate the mean and standard deviation of
the properties of the generated images. Fig. 5(c) show the
distribution of the generated moments for a range of val-
ues. Observe that InvNet is able to successfully generate mi-
crostructures with very low error in terms of p1. We present
additional results for p2 in the appendix Fig. 14. While we
show experiments with 1st and 2nd moment invariances, our
approach extends to several higher-order (energy-based) in-
variances (Torquato 2013).
Comparisons with other methods. We also compare with
the approach proposed by Stinis et al. that enforces physi-
cally valid constraints by training the discriminator on data
and the corresponding residual of the constraints. To ensure
fair comparison, we extend the same concept to WGAN-GP.
For real data, the value of the invariance function (Eq. 8)
goes to 0. The discriminator subsequently, is input the tu-
ple, (x, LI(x)) for both the real and fake data during train-
ing. We observe that while InvNet successfully learns to
generate examples similar to the training data that satisfies
the required invariance, the GAN trained as above fails to
converge with the discriminator loss exploding to a high
(∼ −107) value (refer Fig. 6).

In order to motivate the advantages of InvNet over tradi-
tional methods, we compare the time required to generate
microstructures for our approach and the state of the art nu-
merical method (Wodo and Ganapathysubramanian 2012).
We note that the training time incurred by InvNet is amor-
tized over the generation time required to simulate many
microstructures; to generate 100,000 microstructures InvNet
already obtains speedups over existing numerical solutions.
The results of the comparison are presented in Table 1. This
computational advantage will scale with the number of can-
didate images required.

6 Example: Polycrystalline microstructures
We now consider the challenging problem of generating
microstructure images of polycrystalline materials, such as
metal alloys. Polycrystalline materials consist of several

Figure 6: Discriminator loss for the approach presented in Stinis
et al.. Note that the discriminator loss explodes to very high values
within a few iterations.

Table 1: (Left) InvNet generated microstructures for fixed 1st and
2nd moments. (Right) Comparison with simulation times for gen-
erating 105 microstructure images using numerical methods (Wodo
and Ganapathysubramanian 2012).

Model type Time (s)

Numerical solution (Wodo and Ganapathysubramanian 2012)

Generating 1 microstructure† 1.84s
Total time for 100000 images† 184000s
InvNet (our approach)

Training time× 57600s
Generating 1 microstructure× 0.0110s
Total time for 100000 images× 58700s
† Uses Intel 4-core CPU with 32 GB RAM.
× Uses 1 NVIDIA Tesla V100 GPU, 32 GB GDDR5 on TensorFlow GPU version 1.4.

small non-overlapping regions called grains. The orienta-
tion of atoms is necessarily different for adjoining grains.
An example microstructure can be seen in Fig. 8 where each
orientation is represented by a different color. The distribu-
tion of these regions correlates with mechanical and physical
properties.

There are two difficulties in synthesizing polycrystalline
microstructure images: (1) every grain in the image must be
assigned to a specified orientation and, (2) each orientation
must constitute a specific volume fraction. The volume frac-
tion is a statistical invariance, whereas the orientation con-
straint can be construed as a geometric invariance.
Dataset. For this specific example, we consider a dataset
of microstructure images of a metal alloy generated using
Dream3D (Groeber and Jackson 2014). Each image in the
dataset consists of a distribution of five orientations. For the
purposes of training, each orientation is mapped to a scalar
integer value from {1, · · · , 5}. Due to computational limita-
tions, we scale the images down from the original 400×400
domain size to 128× 128.

Given that the polycrystalline microstructure manifold is
integer valued, optimization of the InvNet objective would
not be feasible. Therefore, we use the approach defined in
Sec. 4 to relax the integer valued assignment problem to a
continuous valued probability space. For training, we en-
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Figure 7: Grain distribution for generated polycrystalline data.
The plots represent the mean volume fractions of 100 images for
each required distribution. The horizontal dashed lines denote the
target volume fraction for the orientation. Observe that InvNet is
successful at generating polycrystalline images for a large variety
of grain distributions. Also note that several of the target distribu-
tions are not present in the training dataset.

code the discrete microstructure map from the given dataset,
x ∈ [c]d; c ∈ [1, 5] into pixelwise one-hot tensors. The re-
laxation effectively decomposes the problem of generating
a target grain distribution to the easier problem of enforcing
the volume fraction for each orientation.

The input latent vector, z ∼ N(0, I), allows for explo-
ration of the manifold of poly-crystalline microstructures,
while r ∈ [0, 1]5 is a vector consisting of volume frac-
tions of each of the five orientations. In order to ensure that
the geometric constraint of adjoining grains being assigned
different orientations while satisfying the statistical invari-
ances; we use a similar technique as defined in sec. 4. The
final layer ofGθ is a convolutional layer that outputs a tensor
with the same number of channels as that of the orientations.
We also use a softmax activation to ensure that each pixel is
assigned to only a single orientation. We train InvNet with
the alternating optimization technique with an additional sta-
tistical invariance applied channelwise;

LI(θ) = E(z,r)‖fv(G(z, r))− r‖22, (9)

where fv(x) =

d∑
i=0

xi/d ; x ∈ Rd.

During inference, we use the argmax operation to con-
vert the generated 3D tensors back to the original 2D poly-
cyrstalline maps. Our experimental results in Fig. 8 show
that InvNet successfully generate the microstructures satis-
fying the requisite grain distribution (volume fraction) ac-
curately. We note that the invariance function(Eq. 10) only
captures the relative volume fractions of each orientation.

(a) (b)

Figure 8: (a) Example microstructures from the polycrystalline
dataset. Different orientations are represented by different colors.
(b) Generated microstructures. Each column is generated according
to a specific required volume fraction. InvNet is successfully able
to learn to generate images corresponding to various target volume
fractions.

However, the grain shape and the appropriate placement of
each grain are implicit features that InvNet learns from data.
InvNet, therefore proves to be a useful technique to explore
data spaces that have partially modelled dynamics.

Fig. 8 shows generated examples for different instances
of required volume fractions. We observe that our model is
able to generalize for a large class of grain distributions. We
also analyse the performance of our model in reproducing
images with a required target distribution. As evidenced by
Fig. 7, InvNet is successful in generating polycrystalline mi-
crostructures with a required grain distribution for a large
variety of cases. Interestingly, InvNet is able to generate
images for distributions that are not found in the training
dataset- for e.g. the highly skewed distributions in Fig. 7.
Some examples of microstructure images generated for such
cases have been presented in Fig. 8. Additional results show-
ing generalization are also presented in the appendix (Fig.
15).

7 Discussion
We have proposed InvNets, a natural extension of GANs
that enables specifying additional structural/statistical in-
variances in generated samples.

Our approach relies on representing the invariance as an
additional loss term that we alternately optimize in addition
to the standard adversarial training in GANs. We also show
a number of stylized and real-world applications. Addition-
ally, we present examples of InvNets enforcing constraints
for integer valued solution spaces. Since InvNets also gen-
eralize to problems which have discrete solution spaces, we
posit that our approach can be extended to a large class of ill-
posed discrete optimization problems. We point out that our
approach is motivated by a different application domain than
that of natural images, We specifically focus on domains
where invariances are explicitly, and analytically, available.

An important potential research direction would be to ex-
tend InvNets to 3D spaces for which GANs are currently in-



feasible. InvNets can also be extended to enforce other kinds
of domain informed invariances; for e.g. PDEs governing the
dynamics of a system. InvNets for structured domains such
as graphs would further prove to be useful tools for more
general problems.

Finally, the theoretical analysis of the equilibrium (for
both limiting and non-limiting cases) and stability of train-
ing for the modified three-way game is an open question;
especially for nonlinear discrete invariances.
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